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Background
Is there still a non-adiabatic dynamical characterization?

What Happened?

Excitations?

Topological Defects?

Is it detrimental?

* D. Guery-Odelin, etc. Rev. Mod. Phys.

91, 045001 (2019).

* Zhang L, etc. Sci. Bull. 63, 1385

(2018).
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Generalized Landau-Zener problem
Coulomb Like Time-Dependent Hamiltonian

Coulomb Like Time-Dependent
Hamiltonian

H(t) = σ · h(t)

=

(
g/t + ε cos θ ε sin θe−iφ

ε sin θeiφ −(g/t + ε cos θ)

)

The evolution of state vector |ψ(t)⟩ is

governed by iℏ d
dt |ψ(t)⟩ = H(t)|ψ(t)⟩.

Two Instantaneous Eigenstates

(1, 0)T → |+⟩ = (cos
θ

2
e−iφ

, sin
θ

2
)T ;

(0, 1)T → |−⟩ = (sin
θ

2
e−iφ

,− cos
θ

2
)T ;

Transition Probability |↓⟩ → |+⟩

P =
e−2πg cos θ − e−2πg

e2πg − e−2πg

which is independent of parameters ε and φ.

Figure 1: Instantaneous eigen-energies as functions of time t
for different quench time g . Other parameters: ε = 2,
φ = 0, and θ = π/3, and the same for (b-d). (b) The
occupation probability of time-dependent state vector |ψ(t)⟩
on the two instantaneous eigenstates, with g = 0.1.
(c)Transition probability P from initial ground state to final
excited state as a function of g . (d) Time-averaged spin
polarizations as functions of varying g .
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Generalized Landau-Zener problem
Related Spin Dynamics

Figure 2: Illustration of the crossover from sudden quench regime to adiabatic regime by four Bloch spheres
expressing the dynamics of spin vector. Spin polarization σ(t) (colored arrow) and the unit vector of the
time-dependent effective field n(t) (black arrow) are shown with evolving time. (a) Sudden quench is
approximated with g = 0.025; (b) and (c) Non-adiabatic dynamics with different quench time, g = 5 (b)
and g = 10 (c). (d)Adiabatic limit plotted with g = 100.

H(t) = σ · h(t);

hz =
g
t

+ cos θ, hx = sin θ cosφ, hy = sin θ sinφ.

following Bloch equation derived from the Heisenberg equation of motion:

d
dt

σ(t) = 2h(t) × σ(t).

we get the time averaged spin polarization in three regimes:

⟨σ⟩sq = −n cos θ; ⟨σ⟩ = (2P − 1)n; ⟨σ⟩ad = −n;
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Slow Quench Hamiltonian
1D Case of Topological Quantum Phases

Generical Hamiltanion
H(k) = h(k) · γ =

∑d
i=0 hi (k)γi ;

h0(k) = 0; (BIS)
ν(h0, hso) ⇔ ωd−1(hso), (Bulk − Surface

dD ⇔ (d − 1)D; Correspondence)

Sudden Quench
On BISs, h0 ≫ |hso(k)| → 0,

⇒ cos θ(k) = 0;

⇒⟨σ⟩sq = −n cos θ = 0;

Non-adiabatic dynamics
hx =tso sin kx = hso ,

hz (t) =
g
t

+ mz − t0 cos kx = h0(t);

On BISs, h0 ≫ |hso(kx )| → 0,
BUT ! (2P(kx ) − 1) ̸= 0,

Only ! ⟨σ⟩0 = (2P − 1)n0 = 0;

Figure 3: (a) 1D Case of Sudden quench in Liu’s Paper
(Sci.Bull.2018). (b) ⟨σ⟩ of 1D topological model after
Slow quench dynamics. with tso = 0.2t0 and mz = 0.
Here we set t0 = 1. Two different kinds of zeros appear in
the the z component, which are highlighted by vertical
dashed lines (BIS) and gray lines (SIS, new), respectively.
The topological spin texture can be determined by the
values of x-component on the BIS. In this case, ⟨σx ⟩ has
opposite signs on the two BIS points, and thus gives the
winding number +1.
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Slow Quench Hamiltonian
2D Case of Topological Quantum Phases

Slow Quench Hamiltonian along hz

H(k) = h(k, t) · σ;

hx = mx + tx
so sin kx ,

hy = my + ty
so sin ky ,

hz =
g
t

+ mz − t0 cos kx − t0 cos ky ;

Topological property of post-quench Hamiltonian:
For 0 < mz < 2t0 ⇒ C1 = −1,
While for −2t0 < mz < 0 ⇒ C1 = +1.

Figure 4: Slow quench along hy (k) axis. numerical
results, with mz = t0, mx = 0, tx

so = 0.5ty
so = t0,

and we set t0 = 1 and g = 1. There are two BISs
(black dash line). While the winding of −σ (white
arrow) is trivial along ky = −π, the non-zero winding
number along ky = 0 indicates the topological phase
with Chern number C1 = −1.

Figure 5: Analytical results for 2D Chern insulators in
different post-quench regime with mx = my = 0,
tx,y
so = 0.2t0. Here we set t0 = 1 and g = 5. (a).
⟨σ⟩ are plotted with mz = t0. pink dashed ring is
SIS, black dashed ring is BIS. The white arrows are
the vectors formed by −⟨σ⟩, indicating a nontrivial
topological spin texture with Chern number
C1 = −1. (b). Same case with mz = −t0. As the
winding of white arrows on BIS is opposite to that in
(a), we identify the topological phase with the Chern
number C1 = 1.

Slow Quench Hamiltonian along hy

hy (t) = g/t + my + ty
so sin ky ;
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Quenching under Linear Quench Protocol
1D Case of Linear slow quench

1D Linear Slow Quench Hamiltonian
H(k) = h(k, t) · σ;

hx = tso sin kx = hso ,

hz (t) = βt + mz − t0 cos kx = h0(t);

Here, β describes how fast the quench is. The quench

starts from t = −∞ to a finite value of t.

Figure 6: Analytical results for the 1D topological
model with Coulomb-like quench protocol g/t.

Figure 7: Numerical results for the 1D topological
model with linear quench protocol βt.
Time-averaged components ⟨σx ⟩ (upper panel) and
⟨σz ⟩ (lower panel) of spin texture ⟨σ⟩ are shown for
different values of quench speed β. The quench is
taken from t = −20 to t = 0 with mz = 0 and
tso = 0.6t0 so that the post-quench Hamiltonian is
in topologically nontrivial phase. After the quench,
the system is under free evolution and the spin
polarization is averaged over a long time period. The
SISs and BISs are denoted by gray lines and dashed
lines, respectively. The opposite sign of −⟨σx ⟩ on
BIS characterizes the nontrivial topology, and gives
the winding number +1.
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Quenching under Linear Quench Protocol
2D Case of Linear slow quench

2D Linear Slow Quench
Hamiltonian

H(k) = h(k, t) · σ;

hx = mx + tx
so sin kx ;

hy = my + ty
so sin ky ;

hz = βt + mz − t0 cos kx − t0 cos ky ;

Figure 8: Analytical results for the 2D
topological model with Coulomb-like quench
protocol g/t.

Figure 9: Numerical results for 2D topological phase with
different quench protocal βt, with mx = my = 0,
tx,y
so = 0.6t0, and β = 0.8 by setting t0 = 1.

(a)Time-averaged spin textures are plotted after slow
quench from t = −10 (trivial) to t = 0 (topological) with
mz = t0. SIS is shown pink dashed ring with ⟨σ⟩ = 0
while BIS is shown by black dashed ring. The white arrows
denote the topological spin texture, composed of −⟨σx,y ⟩,
indicating Chern number C1 = −1. (b) Same case with
mz = −t0. Here the BIS are located at four corners of
Brillouin Zone. From the white arrows, we identify the
topological phase with the Chern number C1 = 1 opposite
to that in (a).
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Slow Quench of Higher Dimensional Phases
Non-adiabatic Characterization of 3D Chiral Topological Phases

The Hamiltonian
of 3D Topological
Phases

H(k) =
∑3

j=0hj (k)γj ;

h0 =
g
t

+ mz − t0
∑

i
cos ki ;

hi = tso sin ki , with i = x, y, z;
Which,

γ0 = σz ⊗ τx , γ1 = σx ⊗ 1,
γ2 = σy ⊗ 1, γ3 = σz ⊗ τz ;

For t0 < mz < 3t0

⇒ ν3 = −1,

For −t0 < mz < t0

⇒ ν3 = 2,

For −3t0 < mz < −t0

⇒ C1 = −1.

Figure 10: Non-adiabatic characterization of 3D case. The quench is
simulated numerically from t = 0.015 to 1000, with tso = 0.2t0 and
g = 1 by setting t0 = 1. (a)The BIS (sphere) defined by ⟨γ0(k)⟩ = 0
and the topological spin texture field −⟨γ(k)⟩ (pink arrows),
composed of the three components −⟨γ1,2,3(k)⟩ [pink arrows on the
three spheres in (d)]. (b) and (c) are ⟨γ3⟩ on cross sections kx,y = 0
(b), and kz = π/2 (c). (d) ⟨γ1,2,3⟩ on BIS. Their values of
topological spin texture components are illustrated by pink arrows.

Junchen Ye & Fuxiang Li, Prof. Emergent topology under slow non-adiabatic quantum dynamics 10 / 20



Emergent
topology

under slow
non-adiabatic

quantum
dynamics

Junchen Ye &
Fuxiang Li,

Prof.

Background
Generalized
Landau-Zener
problem
Coulomb Like
Time-Dependent
Hamiltonian
Related Spin
Dynamics

Slow Quench
Hamiltonian
1D Case of
Topological
Quantum Phases
2D Case of
Topological
Quantum Phases

Quenching
under Linear
Quench
Protocol
1D Case of Linear
slow quench
2D Case of Linear
slow quench

Slow Quench
of Higher
Dimensional
Phases
Q & A
Supplement material

Any Questions?

Section 6

Q & A

Any question about the "Minimal" scheme in detecting topological
phases, provided by Non-adiabatic Quantum Dynamics ?
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Theoretical derivation of ˆ⃗σ(t)

⟨σ⃗(t)⟩ = lim
T→∞

1
T

∫ T

0
dt⟨ψ0|e

iHt ˆ⃗σe−iHt |ψ0⟩;

ˆ⃗σ(t) =eiHt ˆ⃗σe−iHt
,

=(⃗n · ˆ⃗σ)⃗n + cos 2ϵt[ ˆ⃗σ − (⃗n · ˆ⃗σ)⃗n]

− sin 2ϵt( ˆ⃗σ × n⃗);

Which means
With the evolution of time, the Pauli
vector revolves around the vector h⃗ with
a cyclotron resonance motion of angular
frequency ω = 2ϵ. The resonant motion
may correspond to a physical image
where electrons with spin magnetic
moments do Larmor precession at an
angular frequency of ωLamor = 2ϵ in the
magnetic field.

Figure 11: Vector ˆ⃗σ(t) precession sketch
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Theoretical derivation of General
Theoretical Model

H =h⃗ · ˆ⃗σ

=ϵ(sin θ cosϕ, sin θ sinϕ, cos θ) · ˆ⃗σ

=ϵ

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
;

Figure 12: Rotation of coordinate sketch

Figure 13: Vector ˆ⃗σ(t) precession in new
coordinate sketch

⟨σ⃗(t)⟩ = ⟨ψ(t)| ˆ⃗σ |ψ(t)⟩

=(|C1|
2 − |C2|

2)z⃗′

− 2|C1C2| cos (2ϵt + ϕc )x⃗′

− 2|C1C2| sin (2ϵt + ϕc )y⃗′;

⟨σ⃗(t)⟩ =(|C1|
2 − |C2|

2 )⃗n;
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In the Case of Sudden Quench
⟨σ⃗(t)⟩ = (|C1|2 − |C2|2)⃗n = [− cos (θ − θ0)− sin θ sin θ0(cos (ϕ− ϕ0)− 1)]⃗n

Figure 14: The analytical solution
of 1D time average spin
polarization ⟨σx,y ⟩

Figure 15: After different quenching
processes, The analytical solution of 2D
time average spin polarization ⟨σx,y,z⟩
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Universal drive model in Slow
Quench

H (⃗k) =(
g/t + ϵ(⃗k) cos [θ(⃗k)] ϵ(⃗k) sin [θ(⃗k)]e−iϕ(⃗k)

ϵ(⃗k) sin [θ(⃗k)]eiϕ(⃗k) −g/t − ϵ(⃗k) cos [θ(⃗k)]

)

g ∈ [0,∞) in the time-dependent Hamiltonian

represents the quenching speed. The larger the g

factor, the slower the quenching rate. When g = 0,

the model degenerates into the Sudden Qunch model.

Figure 16: After a Sudden Quench, the
spin precession near the BIS
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Dynamic characterization
in Slow Quench

⟨σ⃗(t)⟩ =(|P+|2 −
∣∣P−

∣∣2 )⃗n
=

2e−2πg cos [θ(⃗k)]−e−2πg −e2πg

e2πg − e−2πg n⃗;

In BIS

⟨σi (k)⟩ ̸=0, for k ∈ BISs;

⟨σ0(k)⟩ =0, for k ∈ BISs;
In SIS

⟨σi (k)⟩ =0, for k ∈ SISs, i = 0, 1, 2, ..., d

Dynamic characterization
in Sudden Quench

⟨σ⃗(t)⟩ =(|C1|
2 − |C2|

2 )⃗n
=[− cos (θ − θ0)

− sin θ sin θ0(cos (ϕ− ϕ0) − 1)]⃗n;

⟨σi (k)⟩ =0⃗n, for k ∈ BISs;

Figure 17: In 1D, Band Inversion Surface and
Spin Inversion Surface change with the g
factor.
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Method for calculating
Topological Number in 1D Slow
Quench

v1 ≡
1

4πi

∫
BZ

Tr [γH(dH)]

=... =
1
2

∑
BISj

[sgn(h1, Rj ) − sgn(h1, Lj )];

In BIS

(|P+|2 − |P−|2)Slow (⃗k) < 0;

sgn(h1, Rj ) = −sgn(⟨σx ⟩, Rj )

sgn(h1, Lj ) = −sgn(⟨σx ⟩, Lj );

v1 =
1
2

∑
BISj

[sgn(⟨σx ⟩, Lj ) − sgn(⟨σx ⟩, Rj )];

Figure 18: An example of a 1D slow Quench
drive model. Red points represent BIS;
Yellow points represent SIS;
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Method for calculating Topological Number in 2D Slow Quench

Ch1 =
1
4

∑
j,l

sgn(⟨σy ⟩, j, l) · sgnflip(⟨σx ⟩,QBj,l ) − sgn(⟨σx ⟩, j, l) · sgnflip(⟨σy ⟩,QBj,l );

Figure 19: Slowly change mz to
0 < mz < 2t0 for slow quench drive

Figure 20: Slowly change mz to
−2t0 < mz < 0 for slow quench
drive
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Figure 21: Ring structure of spin polarization in Experiment Data. (a) Evolution of p(q, t) in the FBZ from
t = 0 to 1.6 ms, with parameters (V0,Ω0) = (4.0, 1.0)Er and δf = 0. The upper row is from experimental
measurements, and the lower row is from theoretical calculations. (b) Spin polarization in the FBZ at fixed
evolution time t versus σf . The upper row is for (V0,Ω0) = (4.0, 1.0)Er and t t = 480µs, and the lower
row is for (V0,Ω0) = (4.0, 2.0)Er and t = 320µs.
Sun W, Yi C-R, Wang B-Z, etc. Physical Review Letters, 2018, 121(25): 250403.
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